Abstract

CONSTANS (CO)/CONSTANS-like (COL) genes that have been studied in annual model plants such as Arabidopsis thaliana and Oryza sativa play key roles in the photoperiodic flowering pathway. Moso bamboo is a perennial plant characterized by a long vegetative stage and flowers synchronously followed by widespread death. However, the characteristics of COL in moso bamboo remain unclear. In view of this, we performed a genome-wide identification and expression analysis of the COL gene family in moso bamboo. Fourteen nonredundant PheCOL genes were identified, and we analyzed gene structures, phylogeny, and subcellular location predictions. Phylogenetic analyses indicated that 14 PheCOLs could be clustered into three groups, and each clade was well supported by conserved intron/exon structures and motifs. A number of light-related and tissue-specific cis-elements were randomly distributed within the promoter sequences of the PheCOLs. The expression profiling of PheCOL genes in various tissues and developmental stages revealed that most of PheCOL genes were most highly expressed in the leaves and took part in moso bamboo flower development and rapid shoot growth. In addition, the transcription of PheCOLs exhibited a clear diurnal oscillation in both long-day and short-day conditions. Most of the PheCOL genes were inhibited under light treatment and upregulated in dark conditions. PheCOLs can interact with each other. Subcellular localization result showed that PheCOL14 encoded a cell membrane protein, and it bound to the promoter of PheCOL3. Taken together, the results of this study will be useful not only as they contribute to comprehensive information for further analyses of the molecular functions of the PheCOL gene family, but also will provide a theoretical foundation for the further construction of moso bamboo photoperiod regulation networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call