Abstract
The expression in human embryonic kidney (HEK 293) cells of the recombinant zymogen form (pro-) of theCrotalus atroxhemorrhagic metalloproteinase, atrolysin E, is presented. The nascent protein is comprised of pre-, pro-, proteinase-, spacer-, and disintegrin domains. The biochemical characterization of the recombinant zymogen is described along with its activation byC. atroxcrude venom and other hemorrhagic toxins. Unlike the zymogen forms of the matrix metalloproteinases, pro-atrolysin E is not activated by the organomercurial, (4-aminophenyl)mercuric acetate. Pro-atrolysin E could be enzymatically activated byC. atroxcrude venom, PMSF-inhibited crude venom, atrolysin A, and atrolysin E itself. There is no evidence of autoactivation. Using two polyclonal antibodies directed against the proteinase domain and the disintegrin domain of atrolysin E, the proteolytic processing of the recombinant protein by atrolysin A was followed. The first cleavage of pro-atrolysin E by atrolysin A removes the pro-domain. The second proteolysis step removes the disintegrin domain to produce the proteinase/spacer protein. These studies have identified potential activators of snake venom pro-metalloproteinases in crude venom and suggest a general scheme for the activation and processing of venom pro-metalloproteinases by the endogenous, active metalloproteinases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.