Abstract

Valproic acid (VPA), an anti-epileptic drug (AED), has been reported to exhibit anti-angiogenic properties. This study aimed to examine the impact of VPA on the expression of NRP-1 and additional angiogenic factors, as well as angiogenesis, in mouse placenta. Pregnant mice were divided into four groups: control (K), solvent control (KP), VPA treatment at a dose of 400 mg/kg body weight (BW) (P1), and VPA treatment at a dose of 600 mg/kg BW (P2). The mice were subjected to daily treatment via gavage from embryonic day (E) 9 to E14 and E9 to E16. Histological analysis was performed to evaluate Microvascular Density (MVD) and percentage of the placental labyrinth area. In addition, a comparative analysis of Neuropilin-1 (NRP-1), vascular endothelial growth factor (VEGFA), vascular endothelial growth factor receptor (VEGFR-2), and soluble (sFlt1) expression was conducted in relation to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The results of the MVD analysis and percentage of labyrinth area in the E14 and E16 placentas indicated that the treated groups were significantly lower than the control group. The relative expression levels of NRP-1, VEGFA, and VEGFR-2 in the treated groups were lower than those in the control group at E14 and E16. Meanwhile, the relative expression of sFlt1 in the treated groups at E16 was significantly higher than in the control group. Changes in the relative expression of these genes inhibit angiogenesis regulation in the mouse placenta, as evidenced by reduced MVD and a smaller percentage of the labyrinth area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call