Abstract

This study assessed the apoptotic process occurring in the hemocytes of the Pacific oyster, Crassostrea gigas, exposed to Alexandrium catenella, a paralytic shellfish toxins (PSTs) producer. Oysters were experimentally exposed during 48 h to the toxic algae. PSTs accumulation, the expression of 12 key apoptotic-related genes, as well as the variation of the number of hemocytes in apoptosis was measured at time intervals during the experiment. Results show a significant increase of the number of hemocytes in apoptosis after 29 h of exposure. Two pro-apoptotic genes (Bax and Bax-like) implicated in the mitochondrial pathway were significantly upregulated at 21 h followed by the overexpression of two caspase executor genes (caspase-3 and caspase-7) at 29 h, suggesting that the intrinsic pathway was activated. No modulation of the expression of genes implicated in the cell signaling Fas-Associated protein with Death Domain (FADD) and initiation-phase (caspase-2) was observed, suggesting that only the extrinsic pathway was not activated. Moreover, the clear time-dependent upregulation of five (Bcl2, BI-1, IAP1, IAP7B and Hsp70) inhibitors of apoptosis-related genes associated with the return to the initial number of hemocytes in apoptosis at 48 h of exposure suggests the involvement of strong regulatory mechanisms of apoptosis occurring in the hemocytes of the Pacific oyster.

Highlights

  • Apoptosis or type I programmed cell death was reported to play an important role in organism immunity, especially in mollusks [1,2]

  • The aim of the present study was to investigate if exposure to a dense concentration of the toxic dinoflagellate, A. catenella, induces the apoptosis of the effective cells involved in the immune responses of oyster, the hemocytes

  • In C. gigas, key genes involved in this process appear to be similar to those of the vertebrate model

Read more

Summary

Introduction

Apoptosis or type I programmed cell death was reported to play an important role in organism immunity, especially in mollusks [1,2]. Extracellular signals activate the extrinsic pathway (receptor-mediated) through death receptors. Fas-Associated protein with Death Domain (FADD), forming the death-inducing signaling complex (DISC), inducing the activation of initiator cysteine proteases of the caspase family. B-cell lymphoma 2 (Bcl-2) family proteins regulate this process by releasing apoptotic signals from the mitochondria [6,7,8,9]. Members of this family are conserved in invertebrate [10]. Pro-apoptosis can be further subdivided into more fully conserved, “multi-domain” members with homology in the BH1–BH3 domains and BH3-only Bcl-2 family proteins. The cell death process is regulated by inhibitors of caspase, inhibitors of apoptosis (IAPs) [6] and heat shock proteins (Hsps) [12,13,14]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call