Abstract
Tetrabutylammonium bromide (TBAB) is a widely used industrial reagent and is commonly found in our aquatic ecosystem as an industrial byproduct. In humans, the ingestion of TBAB causes severe neurological impairments and disorders such as vertigo, hallucinations, and delirium. Yet, the extent of environmental risk and TBAB toxicity to human health is poorly understood. In this study, we aim to determine the developmental toxicity of TBAB using zebrafish embryos as a model and provide novel insights into the mechanism of action of such chemicals on neurodevelopment and the overall embryonic program. Our results show that exposure to TBAB results in impaired development of the brain, inner ear, and pharyngeal skeletal elements in the zebrafish embryo. TBAB treatment resulted in aberrations in the specification of the neural crest precursors, hindbrain segmentation, and otic neurogenesis. TBAB treatment also induced a surge in apoptosis in the head, tail, and trunk regions of the developing embryo. Long-term TBAB exposure resulted in cardiac edema and craniofacial defects. Further, in silico molecular docking analysis indicated that TBAB binds to AMPA receptors and modulates neural developmental genes such as olfactomedin and acetylcholinesterase in the embryonic brain. To summarize, our study highlights the novel effects of TBAB on embryonic brain formation and segmentation, ear morphogenesis, and craniofacial skeletal development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.