Abstract

This study characterized workers' exposure to sulfuric acid in two cell houses of a zinc production plant. We also aimed at estimating previous exposure to sulfuric acid by simulating the process conditions from before 1975 to produce exposure data for an epidemiological study on cancer in this industry. Further, we compared different sampling methods for aerosols in the cell houses. Personal sampling with a 37 mm Millipore cassette showed that the geometric means of the exposure levels for the workers in the two cell houses were 0.07 mg/m3 (range 0.01-0.48 mg/m3) and 0.04 mg/m3 (range 0.01-0.15 mg/m3). Norway's newly revised limit value of 0.1 mg/m3 was exceeded in 39.0 and 12.9% of the samples in the two cell houses. After the foam layer was removed from the electrolyte surface to simulate the production process from before 1975, the concentration of sulfuric acid increased from 0.11 to 6.04 mg/m3 in stationary measurement by the Millipore sampler. Stationary sampling showed that the Millipore sampler and the inhalable fraction of the Respicon impactor underestimated the sulfuric acid concentration by factors of 1.5 and 2.1 compared with the Institute of Occupational Medicine (IOM) sampler. Sampling with the Respicon impactor showed that the respirable, tracheobronchial and extrathoracic fractions constituted 3.0, 18.7 and 71.7% of the inhalable sulfuric acid aerosol, respectively. Today's exposure levels are lower than those reported to be associated with an increased prevalence of laryngeal cancer in other industries, but the levels prior to 1975 seem to have been much higher. By mass, most of the inhalable aerosol was in the size fractions considered to be highly relevant for the effects of sulfuric acid on the respiratory system. The risk of cancer among the cell house workers should be investigated in an epidemiological study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.