Abstract

Actinobacillus pleuropneumoniae, the etiological agent of porcine pleuropneumonia, is increasingly resistant to antibiotics. However, little is known about the mechanisms of antibiotic resistance in this pathogen. In this study, we experimentally evolved the reference strain of both A. pleuropneumoniae serovar 1 and serovar 7, the most prevalent serovars worldwide, to quinolone resistance by sequential exposure to subinhibitory concentrations of ciprofloxacin. The adaptive ciprofloxacin-resistant mutants of A. pleuropneumoniae serovar 1 and serovar 7 had a minimum inhibitory concentration (MIC) increment from 0.004 to 1 or 2 μg/mL, respectively. Adaptation to ciprofloxacin was shown to confer quinolone resistance with a 32- to 512-fold increase (serovars 1 and 7, respectively) as well as cross-resistance to ampicillin with an increased MIC by 16,384- and 64-fold (serovars 1 and 7, respectively). The genetic analysis of quinolone resistance-determining region mutations showed that substitutions occurred in gyrA (S83A) and parC (D84N) of serovar 1, and gyrA (D87N) of serovar 7. The ciprofloxacin-resistant mutants showed significantly reduced bacterial fitness. The mutants also showed changes in efflux ability and biofilm formation. Notably, the transcription and secretion levels of Apx toxins were dramatically reduced in ciprofloxacin-resistant mutants compared with their wild-type strains. Altogether, these results demonstrated marked phenotypic changes in ciprofloxacin-resistant mutants of A. pleuropneumoniae. The results stress the need for further studies on the impact of both the genotypic and phenotypic characteristics of A. pleuropneumoniae following exposure to subinhibitory concentrations of antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call