Abstract

The skin is the largest body organ that can be physiologically affected by exposure to radiofrequency electromagnetic fields (RF-EMFs). We investigated the effect of RF-EMFs on melanogenesis; Mel-Ab melanocytes were exposed to 1760 MHz radiation with a specific absorption rate of 4.0 W/kg for 4 h/day over 4 days. Exposure to the RF-EMF led to skin pigmentation, with a significant increase in melanin production in Mel-Ab melanocytes. The phosphorylation level of cAMP response element binding protein (CREB) and the expression of microphthalmia-associated transcription factor (MITF), which regulate the expression of tyrosinase, were significantly increased in Mel-Ab after RF-EMF exposure. Interestingly, the expression of tyrosinase was significantly increased, but tyrosinase activity was unchanged in the RF-EMF-exposed Mel-Ab cells. Additionally, the expression of p53 and melanocortin 1 receptor (MC1R), which regulate MITF expression, was significantly increased. These results suggest that the RF-EMF induces melanogenesis by increasing phospho-CREB and MITF activity. Importantly, when Mel-Ab cells were incubated at 38 °C, the melanin production and the levels of tyrosinase significantly decreased, indicating that the increase in melanin synthesis by RF-EMF exposure is not due to a thermal effect. In conclusion, RF-EMF exposure induces melanogenesis in Mel-Ab cells through the increased expression of tyrosinase via the activation of MITF or the phosphorylation of CREB, which are initiated by the activation of p53 and MC1R.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.