Abstract
Lateralization of cognitive functions impacts many behaviours related to fitness and, in most species, varies greatly among individuals. Laboratory and field studies have suggested that within-species variation in lateralization is partly due to phenotypic plasticity. For example, in fish, prey that have experienced predation risk during early ontogeny develop highly lateralized phenotypes, and this lateralization often favours prey in evading predators. In contexts other than predation, plasticity of lateralization has also been reported for adult fish. Therefore, we asked whether adult fathead minnows, Pimephales promelas, exposed to high predation risk would also show plasticity linked to increase lateralization. We exposed minnows to conspecific alarm cues for up to 8 days to simulate predation risk and tested their lateralization with a standard detour test. The treatment affected lateralization but in an unexpected direction: Individuals exposed to high predation risk showed lower lateralization scores compared to control fish. In addition, fish within groups exposed to risk reduced the variability in their directionality of lateralization; that is, they showed a similar turning preference in the detour task. Our study suggests that lateralization can vary in response to predation risk in adult fish. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.