Abstract

Although much is known about the effect of chronic kidney failure and dialysis on the composition of solutes in plasma, little is known about their impact on the composition of gaseous compounds in exhaled breath. This study was designed to explore the effect of uremia and the hemodialysis (HD) procedure on the composition of exhaled breath. Breath samples were collected from 10 dialysis patients immediately before, during, and after a dialysis session. To determine the potential introduction of gaseous compounds from dialysis components, gasses emitted from dialyzers, tubing set, dialysate, and water supplies were collected. Prospective cohort study. 10 HD patients and 10 age-matched healthy individuals. Predictors include the dialyzers, tubing set, dialysate, and water supplies before, during, and after dialysis. Changes in the composition of exhaled breath. A 5-column/detector gas chromatography system was used to measure hydrocarbon, halocarbon, oxygenate, and alkyl nitrate compounds. Concentrations of 14 hydrocarbons and halocarbons in patients' breath rapidly increased after the onset of the HD treatment. All 14 compounds and 5 others not found in patients' breath were emitted from the dialyzers and tubing sets. Contrary to earlier reports, exhaled breath ethane concentrations in our dialysis patients were virtually unchanged during the HD treatment. Single-center study with a small sample size may limit the generalizability of the findings. The study documented the release of several potentially toxic hydrocarbons and halocarbons to patients from the dialyzer and tubing sets during the HD procedure. Because long-term exposure to these compounds may contribute to the morbidity and mortality in dialysis population, this issue should be considered in the manufacturing of the new generation of dialyzers and dialysis tubing sets.

Highlights

  • Much is known about the effect of chronic kidney failure and dialysis on the composition of solutes in plasma, little is known about their impact on the composition of gaseous compounds in exhaled breath

  • We report results for exhaled ethane, because it previously has been reported to be a biomarker for oxidative stress, and 14 additional compounds that showed a rapid increase in concentrations after the initiation of HD

  • The amount of ethane found in exhaled breath from dialysis patients was similar to that found in controls and virtually identical to that found in room air

Read more

Summary

Introduction

Much is known about the effect of chronic kidney failure and dialysis on the composition of solutes in plasma, little is known about their impact on the composition of gaseous compounds in exhaled breath. This study was designed to explore the effect of uremia and the hemodialysis (HD) procedure on the composition of exhaled breath. Breath samples were collected from 10 dialysis patients immediately before, during, and after a dialysis session. To determine the potential introduction of gaseous compounds from dialysis components, gasses emitted from dialyzers, tubing set, dialysate, and water supplies were collected

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call