Abstract

Poly- and per-fluoroalkyl substances (PFAS) have attracted widespread attention in recent years due to their bioaccumulation, toxicity, and ubiquitous nature. We and others have reported that maternal exposure to PFAS is associated with adverse birth outcomes due to altered placental functions. In this study, we investigated the effects of two major PFAS compounds, perfluorobutane sulfonate (PFBS) and perfluorooctanesulfonic acid (PFOS), on the regulation of the production of angiogenic factors and stress response in placental multinucleated syncytial BeWo cells using qRT-PCR and ELISA. Using this in vitro model, we showed that 1) PFOS or PFBS treatment did not seem to interrupt BeWo cell fusion through syncytins; 2) Exposure to PFOS at 10 μM decreased a potent angiogenic factor PlGF gene expression, which is implicated in preeclampsia; 3) Exposure to either PFOS or PFBS significantly decreased the production of CGB7 and hCG except hCG secretion in PFOS (10 nM) and PFBS (100 nM) treatment groups; 4) Exposure to PFOS (10 μM) increased the gene expression of the stress response molecules CRH while neither PFOS nor PFBS treatment affected a stress mitigation factor 11β-HSD2 expression. Our results demonstrate that exposure to PFOS or PFBS impacts several key pathways involved in placental cell functions. PFOS seems more potent than PFBS. These novel findings provide a potential explanation for the adverse reproductive complications associated with prenatal exposure to PFOS or PFBS, including preeclampsia and contribute to our knowledge of the reproductive toxicity of PFAS, specifically PFOS and PFBS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.