Abstract

PCB 77 is a dioxin-like PCB that has been shown to reduce circulating thyroid hormone (TH) levels. This may be an important factor contributing to its neurotoxicity, since THs are essential for normal brain development. In this study, we investigated the changes in TH activating and inactivating iodothyronine deiodinase (D) activities in liver, telencephalon and cerebellum of chicken embryos during the final stages of embryonic development and hatching. We combined these results with measurements of plasma TH levels and intracellular TH availability in the tissues mentioned above, to find out whether D activity was a factor contributing to the PCB 77-induced decrease in peripheral TH levels and/or whether it was capable of reducing the adverse effects on brain via compensatory mechanisms. PCB 77 reduced both T 4 and T 3 levels in plasma and brain. Its effect on hepatic D1 and D3 activity was limited and rebuts a causative role of hepatic Ds in the drop of plasma TH levels. In cerebellum, D2 increased and D3 decreased, indicating a compensatory mechanism in this brain part, mainly during the stages of pipping and hatching. The changes in telencephalon occurred at the earlier stages and included an increase in both D2 and D3 activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.