Abstract

Some chemicals appear to have hormonally active properties in animals, but data in humans are sparse. Therefore, we examined ovarian function in relation to organochlorine compound levels. During 1997-1999, 50 Southeast Asian immigrant women of reproductive age collected urine samples daily. These samples were assayed for metabolites of estrogen and progesterone, and the women's menstrual cycle parameters were assessed. Organochlorine compounds (including DDT, its metabolite DDE, and 10 polychlorinated biphenyl [PCB] congeners) were measured in serum. All samples had detectable DDT and DDE, with mean levels higher than typical U.S. populations. Mean cycle length was approximately 4 days shorter at the highest quartile concentration of DDT or DDE compared with the lowest. After adjustment for lipid levels, age, parity, and tubal ligation, and exclusion of a particularly long cycle, the decrements were attenuated to less than 1 day, with wide confidence intervals (CIs). The adjusted mean luteal phase length was shorter by approximately 1.5 days at the highest quartile of DDT (95% CI = -2.6 to -0.30) or DDE (-2.6 to -0.20). With each doubling of the DDE level, cycle length decreased 1.1 day (-2.4 to 0.23) and luteal phase length decreased 0.6 days (-1.1 to -0.2). Progesterone metabolite levels during the luteal phase were consistently decreased with higher DDE concentration. PCB levels were not generally associated with cycle length or hormone parameters after adjustment, and they did not alter the DDE associations when included in the same models. This study indicates a potential effect of DDE on ovarian function, which may influence other end points such as fertility, pregnancy, and reproductive cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.