Abstract
The neutrophil-derived oxidant N-chlorotaurine (NCT) displays remarkable in vivo tolerability and efficacy against a range of pathogens. The aim of this study was to characterize the response of the pulmonary pathogen Aspergillus fumigatus to NCT. The effect of NCT on the growth and viability of A. fumigatus was characterized. NCT-induced alteration of amino acids and gliotoxin from A. fumigatus mycelium was assessed. Label-free shotgun quantitative proteomic analysis was performed on A. fumigatus exposed to NCT for 24 h. Incubation of A. fumigatus with NCT at concentrations ranging from 6.8 to 55 mM decreased conidial growth and viability, and mycelium biomass relative to the controls. Exposure to NCT (13.77 mM) resulted in increased amino acids and gliotoxin levels from A. fumigatus mycelium. Exposure of A. fumigatus mycelium to NCT (6.8 mM) revealed an enrichment in proteins associated with the ribosome, transcription and translation and non-ribosomal peptide biosynthesis (e.g. Pes1, Pes3), which play an essential role in oxidative stress resistance in A. fumigatus. A decrease in the abundance of proteins associated with fumagillin and pseurotin biosynthesis highlighted the anti-virulence activity of NCT. These results indicate that NCT induces an oxidative stress response in A. fumigatus as evidenced by alterations in the proteome and inhibits conidial and mycelial growth. Clinical investigations of topical application of NCT to treat Aspergillus infections are encouraged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.