Abstract
Even though nanotechnology has revolutionized the biomedical research, a plethora of studies debate the nanoparticles safety. In order to contribute to these studies, we evaluated the cytotoxic and epigenetic effects of maghemite nanoparticles covered with citric acid on human submandibular gland cells. Objective: This work objective was to evaluate the cytotoxic effects and epigenetic alterations induced in human salivary gland cells after treatment with maghemite nanoparticles covered with citric acid. Methods: For that, human submandibular gland cells were cultured and treated with nanoparticles for 24 or 48 hours. To assess cytotoxicity we used lactate dehydrogenase, a general oxidative stress indicator assay and microscopy. Epigenetic status was detected by colorimetric assays and the results were confirmed by quantitative polymerase chain reaction. Results: No cytotoxic effects were detected on cells exposed to up 3.0 mgFemL-1 for 48 hours, although cytoplasmic vacuoles formation was detected by light microscopy analyses. An increased generation of reactive oxygen species in cells exposed to nanoparticles was evidenced and iron clusters accumulated in the cytoplasm of treated cells. Global DNA methylation and histones H3 and H4 acetylation were also altered in response to nanoparticles exposure, thus suggesting a reprogramming of the epigenome. Transcripts accumulation analyses showed that genes related to iron metabolism and oxidative stress were upregulated, while the gene related to epigenetic reprogramming presented reduced transcript accumulation after treatment. Conclusion: We concluded that maghemite nanoparticles covered with citric acid exposure provoked several biological responses without impairment of human submandibular gland cells viability. This is the first report on the epigenetic effects of maghemite nanoparticles on this cell lineage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.