Abstract
Astronauts on the planned mission to Mars will be exposed to galactic cosmic radiation (GCR), with proton and He particles accounting (in approximately equal amounts) for ∼75% of the equivalent dose. Exposure to ≤15 cGy of space radiation ions with Z ≥ 15 particles has been shown to impair various executive functions, including attentional set shifting and creative problem-solving in rats. Executive functions also regulate social interactions and mood. Should space radiation exposure alter these executive functions as it does cognitive flexibility, there is the possibility of altered interactions among crew members and team cooperativity during prolonged space exploration. This study characterized the effects of ≤10 cGy 400 MeV/n of 4He particles on cognitive flexibility and social interaction (within freely interacting dyads) in male Wistar rats. Exposure to ≥1 cGy 4He ions induced deficits in the SD and/or CD stages of the attentional set shifting (ATSET) task, as reported after exposure to Z ≥ 15 space radiation ions. Should similar effects occur in astronauts, these data suggest that they would have a reduced ability to identify key events in a new situation and would be more easily distracted by extraneous variables. The irradiated rats were also screened for performance in a task for unconstrained cognitive flexibility (UCFlex), often referred to as creative problem-solving. There was a marked dose-dependent change in UCFlex performance with ∼30% of rats exposed to 10 cGy being unable to solve the problem, while the remaining rats took longer than the sham-irradiated animals to resolve the problem. Importantly, performance in the ATSET test was not indicative of UCFlex performance. From a risk assessment perspective, these findings suggest that a value based on a single behavioral end point may not fully represent the cognitive deficits induced by space radiation, even within the cognitive flexibility domain. Rats that received 5 cGy 4He ion irradiation had a significantly lower level of interaction toward their sham-irradiated partners in a non-anxiogenic (uncaged) dyad interactions study. This is consistent with the social withdrawal previously observed in space radiation-exposed male mice in a three-chamber test. 4He-irradiated rats exhibited a significantly higher incidence and duration of self-grooming, which is even more concerning, given that their dyad partners were able to physically interact with the irradiated rats (i.e., touching/climbing over them). This study has established that exposure of male rats to "light" ions such as He affects multiple executive functions resulting in deficits in both sociability and cognitive flexibility, and possibly affective behavior (reward valuation). Further studies are needed to determine if these space radiation-induced co-morbidities are concomitantly induced within individual rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.