Abstract
BackgroundIt was previously demonstrated that alanine aminotransferase (ALAT, EC 2.6.1.2) participates in maintaining the alanine-proline cycle between flight muscles and fat body during Aedes aegypti flight. ALAT is also actively involved in the metabolism of ammonia in A. aegypti. Here, we investigated the survival and behavioral costs of ALAT inhibition in A. aegypti females to better understand the role of ALAT in blood-fed mosquitoes.MethodsWe analyzed how A. aegypti female mosquitoes respond to blood meals supplemented with 0, 2.5, 5 and 10 mM L-cycloserine, a well-known inhibitor of ALAT in animals. Mosquitoes were also exposed to blood meals supplemented with L-cycloserine and different concentrations of glucose (0, 10 and 100 mM). Additionally, the effects of ALAT inhibitor and glucose in mosquitoes starved for 24 or 48 h were investigated. Survival and behavioral phenotypes were analyzed during a time course (1, 2, 4, 6, 12, 24, 48 and 72 h after feeding).ResultsL-cycloserine at 10 mM resulted in high mortality relative to control, with an acute effect during the first 6 h after treatment. A significant decrease in the number of active mosquitoes coinciding with an increase in futile wing fanning during the first 24 h was observed at all inhibitor concentrations. A high occurrence of knockdown phenotype was also recorded at this time for both 5 and 10 mM L-cycloserine. The supplementation of glucose in the blood meal amplified the effects of the ALAT inhibitor. In particular, we observed a higher mortality rate concomitant with an increase in the knockdown phenotype. Starvation prior to blood feeding also increased the effects of L-cycloserine with a rapid increase in mortality.ConclusionsOur results provide evidence that exposure of high doses of L-cycloserine during A. aegypti blood feeding affects mosquito survival and motor activity, suggesting an interference with carbohydrate and ammonia metabolism in a time-dependent manner.Electronic supplementary materialThe online version of this article (doi:10.1186/1756-3305-7-373) contains supplementary material, which is available to authorized users.
Highlights
It was previously demonstrated that alanine aminotransferase (ALAT, EC 2.6.1.2) participates in maintaining the alanine-proline cycle between flight muscles and fat body during Aedes aegypti flight
The results presented in this manuscript demonstrate that high doses of LCS interfere with A. aegypti blood metabolism causing an impairment of important behavioral phenotypes and a high mortality
LCS impairs motor activity and survival To better understand the role of Alanine aminotransferase (ALAT) in blood-fed A. aegypti metabolism, we experimentally assessed the survival costs of LCS-dependent inhibition in A. aegypti females and analyzed their behavioral phenotypes during 3 days post treatment
Summary
It was previously demonstrated that alanine aminotransferase (ALAT, EC 2.6.1.2) participates in maintaining the alanine-proline cycle between flight muscles and fat body during Aedes aegypti flight. ALAT is actively involved in the metabolism of ammonia in A. aegypti. Alanine aminotransferase (ALAT), called glutamicpyruvic transaminase (EC 2.6.1.2), is responsible for a bimolecular ping-pong reaction, where the α-amino group of alanine is transferred to α-ketoglutarate, leaving behind pyruvate and glutamate. This reversible reaction synthesizes alanine from pyruvate as well [1]. The enzyme synthesizes alanine from pyruvate, which is produced by glycolysis. ALAT plays an important role in the brain contributing to its energy supply [14]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.