Abstract

BackgroundEarly-life exposure to household pets has the capacity to reduce risk for overweight and allergic disease, especially following caesarean delivery. Since there is some evidence that pets also alter the gut microbial composition of infants, changes to the gut microbiome are putative pathways by which pet exposure can reduce these risks to health. To investigate the impact of pre- and postnatal pet exposure on infant gut microbiota following various birth scenarios, this study employed a large subsample of 746 infants from the Canadian Healthy Infant Longitudinal Development Study (CHILD) cohort, whose mothers were enrolled during pregnancy between 2009 and 2012. Participating mothers were asked to report on household pet ownership at recruitment during the second or third trimester and 3 months postpartum. Infant gut microbiota were profiled with 16S rRNA sequencing from faecal samples collected at the mean age of 3.3 months. Two categories of pet exposure (i) only during pregnancy and (ii) pre- and postnatally were compared to no pet exposure under different birth scenarios.ResultsOver half of studied infants were exposed to at least one furry pet in the prenatal and/or postnatal periods, of which 8% were exposed in pregnancy alone and 46.8% had exposure during both time periods. As a common effect in all birth scenarios, pre- and postnatal pet exposure enriched the abundance of Oscillospira and/or Ruminococcus (P < 0.05) with more than a twofold greater likelihood of high abundance. Among vaginally born infants with maternal intrapartum antibiotic prophylaxis exposure, Streptococcaceae were substantially and significantly reduced by pet exposure (P < 0.001, FDRp = 0.03), reflecting an 80% decreased likelihood of high abundance (OR 0.20, 95%CI, 0.06–0.70) for pet exposure during pregnancy alone and a 69% reduced likelihood (OR 0.31, 95%CI, 0.16–0.58) for exposure in the pre- and postnatal time periods. All of these associations were independent of maternal asthma/allergy status, siblingship, breastfeeding exclusivity and other home characteristics.ConclusionsThe impact of pet ownership varies under different birth scenarios; however, in common, exposure to pets increased the abundance of two bacteria, Ruminococcus and Oscillospira, which have been negatively associated with childhood atopy and obesity.

Highlights

  • Early-life exposure to household pets has the capacity to reduce risk for overweight and allergic disease, especially following caesarean delivery

  • Overall community structure of gut microbiota, diversity and richness of gut microbiota Significant microbial community differences were detected by PERMANOVA by prenatal, as well as pre- and postnatal exposures in all children

  • Reduced species richness within the Proteobacteria phylum became more statistically significant among infants who were born vaginally without Intrapartum antibiotic prophylaxis (IAP) exposure and who were born by emergency caesarean section (CS) (Additional file 3: Table S3)

Read more

Summary

Introduction

Early-life exposure to household pets has the capacity to reduce risk for overweight and allergic disease, especially following caesarean delivery. The gut microbiota of newborns is characterized by low diversity, dominated by facultative anaerobes such as the Proteobacteria, after which the diversity of strict anaerobes within the Firmicutes and Bacteroidetes phyla increases towards an adult-like profile by 1 year of age [1,2,3]. Throughout this development, microbial composition is shaped by a number of factors including gestational age, mode of delivery (vaginal vs caesarean), infant diet (breast milk vs formula) and antibiotic treatment (direct vs indirect via mother) [4, 5]. No association was found between CS delivery and toddler obesity in the presence of pet ownership

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.