Abstract

Per and polyfluoroalkyl substances (PFAS) are of concern to environmental regulators due to their widespread occurrence, persistence and reported toxicity. However, little data exist on the effects of PFAS at environmentally relevant concentrations. The development of molecular markers for PFAS exposure would therefore be useful to better understand the environmental risks of these compounds. In this study, we assessed if such markers could be developed using Gas Chromatography-Mass Spectrometry-based metabolomics. We exposed the freshwater amphipod Austrochiltonia subtenuis to a range of environmentally relevant concentrations of perfluoro-octane sulfonic acid (PFOS), hexafluoropropylene oxide dimer acid (GenX) and perfluorohexanesulphonic acid (PFHxS) for 7 days at five concentrations. A metabolic response was detected in all concentrations and treatments even though the survival rates only differed significantly at the highest exposure levels. The metabolic response differed between compounds but all three PFAS induced changes in the levels of amino acids, fatty acids, and cholesterol, in line with the literature. PFOS was found to bioaccumulate. Both GenX and PFHxS were eliminated from the amphipods, but PFHxS was eliminated at a slower rate than GenX. This information improves our understanding of the sublethal effects of PFAS as well as their environmental fate and behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call