Abstract

In addition to age and traumatic brain injury, environmental exposure to pesticides is a potential risk factor for neurodegenerative diseases and cognitive impairments in humans. Deltamethrin is a type II pyrethroid insecticide widely used in agriculture and homes for pest control. Previously, we reported that repeated exposure of mice to 3 mg/kg deltamethrin for 30 or 60 days caused a marked increase in the endoplasmic reticulum (ER) stress and reduced adult hippocampal neurogenesis that was accompanied by impaired learning and memory. However, it is unknown whether an acute exposure to low doses of deltamethrin elicits similar effects. Here, we sought to characterize the dose-related effects of deltamethrin on ER stress and hippocampal neurogenesis at different time points following acute exposure. Following oral administration of 0, 0.3, 1, or 3 mg/kg deltamethrin, doses below, at, and above the acute NOAEL, mice were euthanized at 24 h, 48 h, 7 d, or 14 d to assess the acute and intermediate-term effects of deltamethrin on neural progenitor cells (NPCs). Deltamethrin at both 1 and 3 mg/kg elicited ER stress response and activation of apoptotic signaling. Data revealed that a dose as low as 1 mg/kg of deltamethrin, considered the acute NOAEL, produced a significant reduction in BrdU+ and Ki-67+ neural stem cells in the subgranular zone of the dentate gyrus of the hippocampus as early as 48 h after exposure. Furthermore, mice treated with 1 and 3 mg/kg deltamethrin exhibited a decreased number of immature neurons, determined by counting DCX-positive cells 7 days after exposure. These data establish that 0.3 mg/kg should be considered a NOAEL and that the previously established acute NOAEL of 1 mg/kg shows significant effects on ER stress and apoptotic pathways accompanied by deficits in aspects of adult hippocampal neurogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call