Abstract

Many aquatic insects are exposed to the dual stressors of heavy metal pollution and rising water temperatures from global warming. These stresses may interact and have stronger impacts on aquatic organisms if heavy metals interfere with the ability of these organisms to handle high temperatures. Here we focus on the effect of copper on upper thermal limits of giant salmonfly nymphs (Order: Plecoptera, Pteronarcys californica), a stonefly species which is common in parts of western North America. Experimental exposure to copper reduced upper thermal limits by ∼ 10 °C in some cases and depressed the hypoxia tolerance (Pcrit) of nymphs by ∼ 0.5 mg L−1 DO. These results suggest that copper inhibits the delivery of oxygen, which may explain, in part, the strong reductions in CTMAX that we report. Fluorescence microscopy of Cu-exposed individuals indicated high levels of copper in chloride cells but no clear evidence of damage to or high levels of copper on the gills themselves. Our study indicates that populations of aquatic insects from copper-polluted environments may be further at risk to future warming than those from uncontaminated environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.