Abstract

Anthropogenic pollution has a disadvantageous influence on various life-history traits. Although direct effects are well known, potential fitness-related trans-generational costs are less studied. Previously, empirical findings have demonstrated that environmental conditions faced by the parental generation have an effect on the traits expressed by their offspring. Here, to study this conjecture larvae of the common fruit fly (Drosophila melanogaster) were either exposed to a sub-lethal concentration of copper or reared on uncontaminated larval medium. Adult flies were kept under uncontaminated conditions. For the next generation, individuals were mated with their own group and their offspring were either exposed to copper or fed with uncontaminated larval medium. We found that in the parental generation copper exposure reduced fecundity compared with uncontaminated controls. In the progeny, females suffered impaired fecundity only if their larval condition differed from the conditions experienced by their parents. If the progeny was raised under similar conditions than the parental generation, no effect on fecundity was discovered, suggesting acclimatization to the prevailing conditions after short-time copper exposure (two generations). Our results demonstrate that exposure to an environmental stressor like heavy metals causes intra-and trans-generational fitness costs. Further, individuals may be able to acclimatize in prevailing contaminated conditions, but this might in turn debase fitness under uncontaminated conditions. Our findings are consistent with the prediction of the adaptive parental effects hypothesis which states that parents may produce offspring that are more successful under conditions faced by their parents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call