Abstract

Background: Being exposed to cooking fumes, kitchen workers are occupationally at risk of multiple respiratory hazards. No conclusive evidence exists as to whether occupational exposure to these fumes is associated with acute and chronic pulmonary effects and symptoms of respiratory diseases. Objective: To quantify the exposure levels and evaluate possible chronic and acute pulmonary effects associated with exposure to cooking fumes. Methods: In this cross-sectional study, 60 kitchen workers exposed to cooking fumes and 60 unexposed employees were investigated. The prevalence of respiratory symptoms among these groups was determined through completion of a standard questionnaire. Pulmonary function parameters were also measured before and after participants' work shift. Moreover, air samples were collected and analyzed to quantify their aldehyde, particle, and volatile organic contents. Results: The mean airborne concentrations of formaldehyde, acetaldehyde, and acrolein was 0.45 (SD 0.41), 0.13 (0.1), and 1.56 (0.41) mg/m3, respectively. The mean atmospheric concentrations of PM1, PM2.5, PM7, PM10, and total volatile organic compounds (TVOCs) was 3.31 (2.6), 12.21 (5.9), 44.16 (16.6), 57 (21.55) µg/m3, and 1.31 (1.11) mg/m3, respectively. All respiratory symptoms were significantly (p<0.05) more prevalent in exposed group. No significant difference was noted between the pre-shift mean of spirometry parameters of exposed and unexposed group. However, exposed workers showed cross-shift decrease in most spirometry parameters, significantly lower than the pre-shift values and those of the comparison group. Conclusion: Exposure to cooking fumes is associated with a significant increase in the prevalence of respiratory symptoms as well as acute reversible decrease in lung functional capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.