Abstract

Coal mining activities are considered harmful to living organisms. These activities release compounds to the environment, such as polycyclic aromatic hydrocarbons (PAHs), metals, and oxides, which can cause oxidative damage to DNA. In this study, we compared the DNA damage and the chemical composition of peripherical blood of 150 individuals exposed to coal mining residues and 120 non-exposed individuals. Analysis of coal particles revealed the presence of elements such as copper (Cu), aluminum (Al), chrome (Cr), silicon (Si) and iron (Fe). The exposed individuals in our study had significant concentrations of Al, sulfur (S), Cr, Fe, and Cu in their blood, as well as hypokalemia. Results from the enzyme-modified comet assay (FPG enzyme) suggest that exposure to coal mining residues caused oxidative DNA damage, particularly purine damage. Furthermore, particles with a diameter of <2.5 μm indicate that direct inhalation could promote these physiological alterations. Finally, a systems biology analysis was performed to investigate the effects of these elements on DNA damage and oxidative stress pathways. Interestingly, Cu, Cr, Fe, and K are key nodes that intensely modulate these pathways. Our results suggest that understanding the imbalance of inorganic elements caused by exposure to coal mining residues is crucial to understanding their effect on human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.