Abstract

Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs) that pose serious challenges to aquatic animals and environments. Compared with BDE-47 which was one of the most toxic congeners known to date, BDE-209 is less toxic with higher abundance in biotic and abiotic samples. In this study, we have explored the effects of BDE-47 and BDE-209 at different concentrations on the radical oxygen species (ROS) levels and the antioxidant defense system of Brachionus plicatilis. Antioxidant indexes were measured, including total protein content (TSP), the activities of antioxidant enzymes, lipid peroxidation and DNA damage. The results indicated that while low concentrations of PBDEs could activate the antioxidant defense mechanisms, prolonged exposure to higher concentrations of PBDEs could impair the antioxidative capacity of B.plicatilis (P< 0.05). The overwhelming of the B.plicatilis antioxidant defense mechanism led to an accumulation of free radicals, resulting in the overactivation of lipid peroxidation and the increased frequency of DNA damage (P<0.05). By studying the toxicity of PBDEs and the detoxification mechanism of B.plicatilis, our research has revealed useful indexes for detecting and monitoring the level of BDE-47 and BDE-209 in the future. Altogether, this study holds immense value in the field of ecotoxicology and environmental safety and will aid in the proper management of PBDEs pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call