Abstract

There is evidence that human-produced androstenes affect attitudinal, emotional and physiological states in a context-dependent manner, suggesting that they could be involved in modulating social interactions. For instance, androstadienone appears to increase attention specifically to emotional information. Most of the previous work focused on one or two androstenes. Here, we tested whether androstenes affect linguistic processing, using three different androstene compounds. Participants (90 women and 77 men) performed a lexical decision task after being exposed to an androstene or to a control treatment (all compounds were applied on the philtrum). We tested effects on three categories of target words, varying in emotional valence: positive, competitive, and neutral words (e.g., hope, war, and century, respectively). Results show that response times were modulated by androstene treatment and by emotional valence of words. Androstenone, but not androstadienone and androstenol, significantly slowed down the reaction time to words with competitive valence. Moreover, men exposed to androstenol showed a significantly reduced error rate, although men tended to make more errors than women in general. This suggests that these androstenes modulate the processing of emotional words, namely some particular lexical emotional content may become more salient under the effect of androstenes.

Highlights

  • Despite the conventional belief that olfaction is not as efficient and functional in humans as in other mammals, humans have a very good sense of smell (Stoddart, 1990; Schaal and Porter, 1991; Wyatt, 2014; Wyatt and, 2015; McGann, 2017)

  • Four were discarded from subsequent analyses: one because she was aged more than 40 years; two because they made more than 10% errors on the lexical decision task; and one because 10% of his response times were outliers according to the classical criterion used in studies dealing with this kind of task

  • Additional, pair-wise comparisons between control treatment and androstenone treatment revealed that response times to words with positive valence were significantly shorter in the androstenone group than in the control group [linear mixed-effects models (LMM): F(1, 1,127) = 9.430, P = 0.002]; whereas response times to words with neutral or competitive valence did not differ significantly between mineral oil and androstenone treatment

Read more

Summary

Introduction

Despite the conventional belief that olfaction is not as efficient and functional in humans as in other mammals, humans have a very good sense of smell (Stoddart, 1990; Schaal and Porter, 1991; Wyatt, 2014; Wyatt and, 2015; McGann, 2017). Humans are reported to be able to discriminate one trillion olfactory stimuli (Bushdid et al, 2014) and at best an innumerable amount of odors (Gerkin and Castro, 2015). Humans use this sensory channel extensively and chemical communication plays an important role in our everyday life, consciously or unconsciously. Odorants have an effect on taste perception by enhancing or suppressing both sweet and sour tastes (Stevenson et al, 1999). Perhaps one of the most surprising ways by which odorants influence human behavior is through the modulation of other sensory inputs. We automatically adjust the spread of our fingers to match the size of an object when

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.