Abstract
Virtual reality (VR) has been shown to produce analgesic effects during different experimental and clinical pain states. Despite this, the top-down mechanisms are still poorly understood. In this study, we examined the influence of both a real and sham (ie, the same images in 2D) immersive arctic VR environment on conditioned pain modulation (CPM) and in a human surrogate model of central sensitization in 38 healthy volunteers. CPM and acute heat pain thresholds were assessed before and during VR/sham exposure in the absence of any sensitization. In a follow-on study, we used the cutaneous high frequency stimulation model of central sensitization and measured changes in mechanical pain sensitivity in an area of heterotopic sensitization before and during VR/sham exposure. There was an increase in CPM efficiency during the VR condition compared to baseline (P < .01). In the sham condition, there was a decrease in CPM efficiency compared to baseline (P < .01) and the real VR condition (P < .001). Neither real nor sham VR had any effect on pain ratings reported during the conditioning period or on heat pain threshold. There was also an attenuation of mechanical pain sensitivity during the VR condition indicating a lower sensitivity compared to sham (P < .05). We conclude that exposure to an immersive VR environment has no effect over acute pain thresholds but can modulate dynamic CPM responses and mechanical hypersensitivity in healthy volunteers. PerspectiveThis study has demonstrated that exposure to an immersive virtual reality environment can modulate perceptual correlates of endogenous pain modulation and secondary hyperalgesia in a human surrogate pain model. These results suggest that virtual reality could provide a novel mechanism-driven analgesic strategy in patients with altered central pain processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.