Abstract

Even if slaughterhouses’ workers handle large amounts of organic material and are potentially exposed to a wide range of biological agents, relatively little and not recent data are available. The main objective of this study was to characterize indoor concentrations of airborne bacteria, fungi, and endotoxin mod = Im (endotoxin∼Gram-negative*plant*filter) in two Italian poultry slaughterhouses. Air samples near air handling units inlets were also collected. Since there are not standardized protocols for endotoxin sampling and extraction procedures, an additional aim of the study was to compare the extraction efficiency of three different filter.. The study was also aimed at determining the correlation between concentrations of Gram-negative bacteria and endotoxin.In Plant A bacterial levels ranged from 17.5 to 2.6×103 CFU/m3. The highest concentrations were observed in evisceration area of chickens, between the automatic detachment of the neck and washing offal, and near birds coupling before hair-chilling. The highest mean value of Gram-negative (266.5 CFU/m3) was found near the washing offal of turkeys. In Plant B bacterial concentration ranged from 35 to 8×103 CFU/m3. The highest concentration. with the highest value of Gram-negative (248 CFU/m3), was found after defeathering. Fungal concentrations were overall lower than those found for bacteria (range: 0–205 CFU/m3 in Plant A and 0–146.2 CFU/m3 in Plant B).The microbial flora was dominated by Gram-negative and coagulase-negative staphylococci for bacteria and by species belonging to Cladosporium, Penicillium and Aspergillus genera for molds. The highest endotoxin concentrations were measured in washing offal for Plant A (range: 122.7–165.9 EU/m3) and after defeathering for Plant B (range: 0.83–38.85 EU/m3).In this study airborne microorganisms concentrations were lower than those found in similar occupational settings and below the occupational limits proposed by some authors. However, these microorganisms may exert adverse effects on exposed workers, in particular for those engaged in the early slaughtering stages, as evidenced by the presence of pathogenic species. The detection of pathogenic bacteria near AHU inlet may constitute a risk to public health and environmental pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.