Abstract

BackgroundEpidemiological studies have shown that as ambient air pollution (AP) increases the risk of cardiovascular mortality also increases. The mechanisms of this effect may be linked to alterations in autonomic nervous system function. We wished to examine the effects of industrial AP on heart rate variability (HRV), a measure of subtle changes in heart rate and rhythm representing autonomic input to the heart.MethodsSixty healthy adults were randomized to spend five consecutive 8-h days outdoors in one of two locations: (1) adjacent to a steel plant in the Bayview neighbourhood in Sault Ste Marie Ontario or (2) at a College campus, several kilometers from the plant. Following a 9–16 day washout period, participants spent five consecutive days at the other site. Ambient AP levels and ambulatory electrocardiogram recordings were collected daily. HRV analysis was undertaken on a segment of the ambulatory ECG recording during a 15 min rest period, near the end of the 8-h on-site day. Standard HRV parameters from both time and frequency domains were measured. Ambient AP was measured with fixed site monitors at both sites. Statistical analysis was completed using mixed-effects models.ResultsCompared to the College site, HRV was statistically significantly reduced at the Bayview site by 13% (95%CI 3.6,19.2) for the standard deviation of normal to normal, 8% (95%CI 0.1, 4.9) for the percent normal to normal intervals differing by more than 50 ms, and 15% (95%CI 74.9, 571.2) for low frequency power. Levels of carbon monoxide, sulphur dioxide, nitrogen dioxide, and fine and ultrafine particulates were slightly, but statistically significantly, elevated at Bayview when compared to College. Interquartile range changes in individual air pollutants were significantly associated with reductions in HRV measured on the same day. The patterns of effect showed a high degree of consistency, with nearly all pollutants significantly inversely associated with at least one measure of HRV.ConclusionsThe significant associations between AP and changes in HRV suggest that ambient AP near a steel plant may impact autonomic nervous system control of the heart.

Highlights

  • Epidemiological studies have shown that as ambient air pollution (AP) increases the risk of cardiovascular mortality increases

  • Components of the time domain of heart rate variability (HRV) decreased significantly at Bayview when compared to College (Fig. 1)

  • Proximity to the steel plant was associated with significant reductions in HRV, and these reductions appeared to be related to the elevated pollutant concentrations at the Bayview site

Read more

Summary

Introduction

Epidemiological studies have shown that as ambient air pollution (AP) increases the risk of cardiovascular mortality increases The mechanisms of this effect may be linked to alterations in autonomic nervous system function. More recent studies have linked ambient AP to acute effects on human health [2, 4, 7], and cardiovascular morbidity and mortality, including increased risks of cardiac rhythm disturbance [2]. Data suggest that both acute and chronic effects of AP are related to oxidative stress and activation of stress pathways, including the autonomic nervous system [4]. Reduced HRV has been linked to increased risk of cardiovascular mortality and morbidity in vulnerable populations, including the elderly [11], diabetics and heart failure patients [12], and has been shown to be predictive of all-cause mortality risk in healthy populations [12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.