Abstract

IntroductionEmerging research suggested a nexus between air pollution exposure and risks of overweight and obesity, while existing longitudinal evidence was extensively sparse, particularly in densely populated regions. This study aimed to quantify concentration-response associations of changes in weight and waist circumference (WC) related to air pollution in Chinese adults. MethodsWe conceived a nationally representative longitudinal study from 2011 to 2015, by collecting 34,854 observations from 13,757 middle-aged and older adults in 28 provincial regions of China. Participants' height, weight and WC were measured by interviewers using standardized devices. Concentrations of major air pollutants including fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) predicted by well-validated spatiotemporal models were assigned to participants according to their residential cities. Possible exposure biases were checked through 1000 random simulated exposure at individual level, using a Monte Carlo simulation approach. Linear mixed-effects models were applied to estimate the relationships of air pollution with weight and WC changes, and restricted cubic spline functions were adopted to smooth concentration-response (C-R) curves. ResultsEach 10-μg/m3 rise in PM2.5, NO2 and O3 was associated with an increase of 0.825 (95% confidence interval: 0.740, 0.910), 0.921 (0.811, 1.032) and 1.379 (1.141, 1.616) kg in weight, respectively, corresponding to WC gains of 0.688 (0.592, 0.784), 1.189 (1.040, 1.337) and 0.740 (0.478, 1.002) cm. Non-significant violation for linear C-R relationships was observed with exception of NO2-weight and PM2.5/NO2-WC associations. Sex-stratified analyses revealed elevated vulnerability in women to gain of weight in exposure to PM2.5 and NO2. Sensitive analyses largely supported our primary findings via assessing exposure estimates from 1000 random simulations, and performing reanalysis based on non-imputed covariates and non-obese participants, as well as alternative indicators (i.e., body mass index and waist-to-height ratio). ConclusionsWe found positively robust associations of later-life exposure to air pollutants with gains in weight and WC based on a national sample of Chinese adult men and women. Our findings suggested that mitigation of air pollution may be an efficient intervention to relieve obesity burden.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call