Abstract

Acetochlor is one of the most widely used herbicides in the world, however, there are few data on the sub-lethal effects of acetochlor on early developmental stages of fish. To address this, we measured survival, deformity, swim bladder formation, embryo oxygen consumption rates, reactive oxygen species (ROS) levels, transcripts (related to swim bladder formation, oxidative damage response, and apoptosis) and behavior responses following exposure to acetochlor (0.001 µM up to 125 µM). Exposure to acetochlor at concentrations 50 µM and above exerted 100% mortality after 3 dpf, and significantly reduced the size of the swim bladder (25 µM). In embryos, basal respiration, oligomycin-induced ATP production, and maximal respiration were decreased 30–60% following a 24 h exposure to 125 μM acetochlor. Acetochlor did not affect ROS levels up to 25 µM in larvae with acute exposure. Acetochlor at 25 µM increased mRNA levels of bax1, hsp70, and hsp90a by ~4-fold in larval zebrafish. In both the visual motor response and light-dark preference test, 25 µM acetochlor increased locomotor activity of larval fish. At lower exposure concentrations, 100 and 1000 nM acetochlor increased the mean time spent in the dark zone, suggesting promotion of anxiolytic behavior. This study presents a comprehensive evaluation of sublethal effects of acetochlor, spanning molecular responses to behavior, which can be used to refine risk assessment decisions for aquatic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.