Abstract

Artificial nighttime lighting from streetlights and other sources has a broad range of biological effects. Understanding the spatial and temporal levels and patterns of this lighting is a key step in determining the severity of adverse effects on different ecosystems, vegetation, and habitat types. Few such analyses have been conducted, particularly for regions with high biodiversity, including the tropics. We used an intercalibrated version of the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) images of stable nighttime lights to determine what proportion of original and current Brazilian vegetation types are experiencing measurable levels of artificial light and how this has changed in recent years. The percentage area affected by both detectable light and increases in brightness ranged between 0 and 35% for native vegetation types, and between 0 and 25% for current vegetation (i.e. including agriculture). The most heavily affected areas encompassed terrestrial coastal vegetation types (restingas and mangroves), Semideciduous Seasonal Forest, and Mixed Ombrophilous Forest. The existing small remnants of Lowland Deciduous and Semideciduous Seasonal Forests and of Campinarana had the lowest exposure levels to artificial light. Light pollution has not often been investigated in developing countries but our data show that it is an environmental concern.

Highlights

  • The nighttime environment is undergoing a dramatic transformation across the Earth’s surface

  • In this paper we provide the first assessment of the broad level of exposure of tropical and subtropical ecosystems to artificial light at night at a regional extent

  • Because the percentage of areas of the different vegetation types affected by increases in brightness was higher than those affected by detectable light in most of the cases (Figs 1, 2, 3A and 3B), it seems inevitable that the extent of artificial lighting will continue to increase

Read more

Summary

Introduction

The nighttime environment is undergoing a dramatic transformation across the Earth’s surface. The cycles of natural light (daily, lunar and seasonal) that have been major forms of environmental variation since the first emergence of life are being disrupted through the introduction of artificial lighting. Because natural cycles of light have previously provided rather consistent resources and sources of information for organisms, artificial nighttime lighting has a broad range of biological effects [5,6,7]. These span from gene to ecosystem levels [8,9]. They include effects on the PLOS ONE | DOI:10.1371/journal.pone.0171655. They include effects on the PLOS ONE | DOI:10.1371/journal.pone.0171655 February 8, 2017

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call