Abstract

IFN-gamma-inducible lysosomal thiol reductase (GILT), which plays a role in MHC class II-restricted processing and presentation of Ags containing disulfide bonds, can be induced in various cell types by the cytokine IFN-gamma. APCs, including circulating macrophages, constitutively express high levels of GILT, although the pathways regulating its expression in these cells have not been characterized. In this study, we used the promonocytic cell line THP-1, an established model for monocyte to macrophage differentiation, to investigate the induction of GILT upon exposure to bacteria. We show that contact with LPS or intact Escherichia coli causes THP-1 cells to undergo programmed differentiation, characterized by adhesion, cytokine secretion, and up-regulation of Ag processing and presentation components, including GILT. Unlike GILT induction in response to IFN-gamma treatment, induction by bacteria is dependent on new protein synthesis, NF-kappaB signaling, and secretion of the inflammatory cytokines TNF and IL-1beta. Furthermore, we show that both cytokines are sufficient for GILT induction in the absence of a microbial stimulus. The majority of GILT synthesized by differentiated THP-1 cells is secreted as the precursor form rather than being transported to, and maturing in, lysosomes, suggesting a novel role for GILT in cells of the macrophage lineage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.