Abstract

Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants used to retard the ignition and/or spread of fire. PBDEs are used in various consumer products, such as textiles, mattresses and TV screens. This study presents a chemical risk assessment for the Irish population based on exposure to PBDEs from food. Special regard is given to the influence of parameter uncertainty and variability on the margins of safety. To quantitatively model uncertainty and variability in concentration data and variability in consumer behavior, a hierarchical probabilistic model was constructed. This model was evaluated using a two-dimensional Monte Carlo simulation (2D-MCS) approach. By considering uncertainty and variability in concentration data, margins of safety (MOS) were derived that are lower by a factor of ∼2 compared to MOS based on dose estimates that only consider variability. The lowest MOS is 7.5 × 104 for BDE-99, with impaired spermatogenesis as toxic endpoint. Assuming an MOS of 104 as acceptable, we conclude that there is no significant risk for human health through intake of contaminated food. To investigate whether additional measurements could improve the quality of dose estimates, the statistic “uncertainty-to-variability (UVR)” was developed. By applying the UVR to our dose estimates, we show that, in our case, the datasets contain little uncertainty and additional measurements would not significantly improve the quality of dose estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.