Abstract

Immunohistochemical and immunofluorescence staining approaches are powerful tools for characterization of the endogenous protein expression and subcellular compartmentalization. However, several technical problems hamper identification of low-abundance nuclear proteins in archival formalin-fixed, paraffin-embedded human neural tissue. These include loss of protein antigenicity during tissue fixation and processing, and intrinsic auto-fluorescence associated with the tissue related to its fixation and the presence of lipofuscin. We evaluated several antigen retrieval methods to establish a strategy for detection of neuronal nuclear proteins in human spinal cord formalin-fixed, paraffin-embedded tissue. Thus, using immunostaining of the neuron-specific nuclear protein NeuN as the outcome measure, we found that heating tissue sections in an alkaline pH buffer unmasked protein epitopes most effectively. Moreover, staining by immunohistochemistry with diaminobenzidine tetrahydrochloride chromagen was superior to immunofluorescence labeling, likely due to the signal amplification steps included in the former approach. Auto-fluorescence in the tissue sections can be effectively reduced, but a sufficient fluorescence signal associated with specific antibody labeling could not be detected above this background for NeuN in the nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.