Abstract

Microplastics in the environment produced by decomposition of globally increasing waste plastics have become a dominant component of both water and air pollution. To examine the potential toxicological effects of microplastics on human cells, the cultured human alveolar A549 cells were exposed to polystyrene microplastics (PS-MPs) of 1 and 10 μm diameter as a model of the environmental contaminants. Both sizes caused a significant reduction in cell proliferation but exhibited little cytotoxicity, as measured by the maintenance of cell viabilities determined by trypan blue staining and by Calcein-AM staining. The cell viabilities did not drop below 93% even at concentrations of PS-MPs as high as 100 μg/mL. Despite these high viabilities, further assays revealed a population level decrease in metabolic activity parallel in time with a dramatic decrease in proliferation rate in PS-MP exposed cells. Furthermore, phase contrast imaging of live cells at 72 h revealed major changes in the morphology of cells exposed to microplastics, as well as the uptake of multiple 1 μm PS-MPs into the cells. Confocal fluorescent microscopy at 24 h of exposure confirmed the incorporation of 1 μm PS-MPs. These disturbances at the proliferative and cytoskeletal levels of human cells lead us to propose that airborne polystyrene microplastics may have toxicologic consequences. This is the first report of exposure of human cells to an environmental contaminant resulting in the dual effects of inhibition of cell proliferation and major changes in cell morphology. Our results make clear that human exposure to microplastic pollution has significant consequence and potential for harm to humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.