Abstract

Pb(II) is a neurotoxic pollutant that produces permanent cognitive deficits in children. Pb(II) can modulate cell signaling pathways and cell viability in a variety of cell types. However, these actions are not well demonstrated on glial cells, which represent an important target for metals into the central nervous system. The present work was undertaken to determine the ability of Pb(II) in modulating the activity of mitogen activated protein kinases (MAPKs) in cultures of C6 rat glioma cells, a useful functional model for the study of astrocytes. Additionally, cell viability was analyzed by measurement of MTT reduction. Cells were exposed to lead acetate 0.1, 1, 10 microM for 24 and 48 h. MAPKs activation - in particular ERK1/2, p38(MAPK) and JNK1/2 - were analyzed by western blotting. Results showed that 10 microM Pb(II) treatment for 24 h caused a discrete stimulation of p38(MAPK) phosphorylation. However, 1 and 10 microM Pb(II) treatment for 48 h provoked a significant stimulation in the phosphorylation state of p38(MAPK) and JNK1/2. The phosphorylation state of ERK1/2 was not modified by any Pb(II) treatment. Moreover, data indicate that at 48 h treatment even 1 microM Pb(II) can be cytotoxic, causing impairment on cell viability. Therefore, depending on a long incubation period, a significant concomitant activation of p38(MAPK) and JNK1/2 by Pb(II) took place in parallel with the impairment of C6 glioma cells viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.