Abstract

Non-muscle invasive bladder cancer is a common tumour in men and women. In case of resistance to the standard therapeutic agents, gemcitabine can be used as off-label instillation therapy into the bladder. To reduce potential side effects, continuous efforts are made to optimise the therapeutic potential of drugs, thereby reducing the effective dose and consequently the pharmacological burden of the medication. We recently demonstrated that it is possible to significantly increase the therapeutic efficacy of mitomycin C against a bladder carcinoma cell line by exposure to non-toxic doses of blue light (453 nm). In the present study, we investigated whether the therapeutically supportive effect of blue light can be further enhanced by the additional use of the wavelength-specific photosensitiser riboflavin. We found that the gemcitabine-induced cytotoxicity of bladder cancer cell lines (BFTC-905, SW-1710, RT-112) was significantly enhanced by non-toxic doses of blue light in the presence of riboflavin. Enhanced cytotoxicity correlated with decreased levels of mitochondrial ATP synthesis and increased lipid peroxidation was most likely the result of increased oxidative stress. Due to these properties, blue light in combination with riboflavin could represent an effective therapy option with few side effects and increase the success of local treatment of bladder cancer, whereby the dose of the chemotherapeutic agent used and thus the chemical load could be significantly reduced with similar or improved therapeutic success.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call