Abstract

Ultimate limitation of lithography has been studied by using the diffused aerial image model (DAIM). Assuming that only the 0th and 1st order diffraction beams in the off-axis illumination technique contribute to the resist patterns, aerial image is calculated for dense line and space patterns. And then DAIM is applied to achieve final image. By using this diffused aerial image, exposure latitude and mask error effect can be analyzed quantitatively. In the case of perfect image, which can be achieved from, for example, diffraction free x-ray lithography or electron beam lithography without Coulomb repulsion and back scattering effect, same approaches are possible to get the exposure latitude and mask error effect. Under the validation of DAIM, most important parameter, which characterizes dense L/S patterns, is the diffusion length of acid. In order to realize sub-o.1 micrometers pattern with enough process margins, it is required to enlarge exposure latitude and to reduce mask error effect. Therefore, reducing h acid diffusion length of chemical amplification resist (CAR) or new conceptual resist instead of CAR will be needed for sub-0.1 micrometers era.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.