Abstract

Multi-walled carbon nanotubes (MWCNTs) are used as a filler in composites to obtain electrical conductivity, and improve mechanical strength and other properties. However, exposure to MWCNTs may pose health risks because of their size, shape, and insolubility. A quantitative exposure assessment method for CNTs is therefore needed. We have developed a promising carbon analysis method that considers the size distribution of elemental carbon. We conducted exposure assessment according to the lifecycle of CNTs. At the first stage, large quantity of CNTs are handled and exposure to neat CNTs is likely to occur. When large quantity of CNTs are handled, enclosure and automated process are strongly recommended. By applying appropriate measures, CNT concentration can be well controlled. Local exhaust ventilation and less-restrictive enclosures were found to work well during the second stage, which involves handling smaller CNT quantities. At measured sites, MWCNT concentrations were below an occupational exposure level proposed by Nakanishi (i.e., 0.030 mg/m3). This analysis method can also be applied to particles containing MWCNTs. At downstream stages of the lifecycle, neat MWCNTs were not observed and concentrations of embedded MWCNTs were lower than 0.015 mg/m3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call