Abstract

Mixture cure models have been developed as an effective tool to analyze failure time data with a cure fraction. Used in conjunction with the logistic regression model, this model allows covariate-adjusted inference of an exposure effect on the cured probability and the hazard of failure for the uncured subjects. However, the covariate-adjusted inference for the overall exposure effect is not directly provided. In this paper, we describe a Cox proportional hazards cure model to analyze interval-censored survival data in the presence of a cured fraction and then apply a post-estimation approach by using model-predicted estimates difference to assess the overall exposure effect on the restricted mean survival time scale. For baseline hazard/survival function estimation, simple parametric models as fractional polynomials or restricted cubic splines are utilized to approximate the baseline logarithm cumulative hazard function, or, alternatively, the full likelihood is specified through a piecewise linear approximation for the cumulative baseline hazard function. Simulation studies were conducted to demonstrate the unbiasedness of both estimation methods for the overall exposure effect estimates over various baseline hazard distribution shapes. The methods are applied to analyze the interval-censored relapse time data from a smoking cessation study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.