Abstract

Because people spend most of their time indoors, the characterization of indoor air quality is important for exposure assessment. Unfortunately, indoor air data are scarce, leading to a major data gap in risk assessment. In this study, PM2.5 concentrations in both indoor and outdoor air were simultaneously measured using on-line particulate counters in 13 households in Haidian, Beijing for both heating and non-heating seasons. A bimodal distribution of PM2.5 concentrations suggests rapid transitions between polluted and non-polluted situations. The PM2.5 concentrations in indoor and outdoor air varied synchronously, with the indoor variation lagging. The lag time in the heating season was longer than that in the non-heating season. The particle sizes in indoor air were smaller than those in ambient air in the heating season and vice versa in the non-heating season. PM2.5 concentrations in indoor air were generally lower than those in ambient air except when ambient concentrations dropped sharply to very low levels or there were internal emissions from cooking or other activities. The effectiveness of an air cleaner to reduce indoor PM2.5 concentrations was demonstrated. Non-linear regression models were developed to predict indoor air PM2.5 concentrations based on ambient data with lag time incorporated. The models were applied to estimate the overall population exposure to PM2.5 and the health consequences in Haidian. The health impacts would be significantly overestimated without the indoor exposure being taken into consideration, and this bias would increase as the ambient air quality improved in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.