Abstract
During co-pyrolysis of biomass with plastic waste, bio-oil yields (BOY) could be either induced or reduced significantly via synergistic effects (SE). However, investigating/ interpreting the SE and BOY in multidimensional domains is complicated and limited. This work applied XGBoost machine-learning and Shapley additive explanation (SHAP) to develop interpretable/ explainable models for predicting BOY and SE from co-pyrolysis of biomass and plastic waste using 26 input features. Imbalanced training datasets were improved by synthetic minority over-sampling technique. The prediction accuracy of XGBoost models was nearly 0.90 R2 for BOY while greater than 0.85 R2 for SE. By SHAP, individual impact and interaction of input features on the XGBoost models can be achieved. Although reaction temperature and biomass-to-plastic ratio were the top two important features, overall contributions of feedstock characteristics were more than 60 % in the system of co-pyrolysis. The finding provides a better understanding of co-pyrolysis and a way of further improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.