Abstract

Sir: Heart failure is the leading cause of death in developed nations worldwide.1 Management of severe disease is limited, with cardiac transplantation and long-term mechanical assistance being the only definitive therapeutic options.1,2 In patients awaiting transplantation, left ventricular assist devices provide temporary support until a donor heart becomes available or myocardial function improves. Although ventricular assist devices have revolutionized the current algorithm for cardiac transplantation, their use is not without risks and complications. Left ventricular assist device infections occur in a reported 18 to 59 percent of cases.1 Left ventricular assist device infection can have catastrophic outcomes if not treated early and effectively. The mainstay of treatment is antibiotic therapy, with local wound care and eventual pump removal.1 Because of poor perfusion in the pump pocket, formation of bacterial biofilms, and surrounding scarring, microbes involved in left ventricular assist device infections are somewhat protected from antibacterial medications, necessitating healthy vascularized tissue recruitment to promote healing and antibiotic penetrance.3 A 32-year-old man with a remote history of reticulum cell sarcoma, treated with an above-knee amputation and Adriamycin (Pharmacia & Upjohn, Bridgewater, N.J.), was admitted to the intensive care unit in cardiogenic shock. Three weeks after admission, a left ventricular assist device was implanted as a bridge to cardiac transplantation. Two months after left ventricular assist device implantation, the patient developed wound dehiscence and evidence of a pump pocket infection. After pump pocket debridement, the soft-tissue defect measured approximately 12 × 8 cm in size. The left ventricular assist device itself was entirely exposed (Fig. 1). An intraoperative decision was made to perform bilateral, bipedicled rectus myocutaneous flaps using the components separation technique.Fig. 1.: After thorough irrigation and debridement of the infected pump pocket, the ventricular assist device is exposed through the large midline defect.Longitudinal incisions were made, bilaterally, along the lateral anterior abdominal lines, with dissection carried down to the external oblique/rectus muscle junction. The rectus muscle was then dissected off of the oblique laterally and freed up along the deep and superficial aspects as well. The superior and inferior portions of the muscle were not dissected, maintaining a bipedicled blood supply from both the superior and inferior epigastric vessels. The patient, a competitive body builder, had a very muscular abdominal wall, and the lateral relaxing incisions allowed complete mobilization of the rectus muscle flaps, resulting in sufficient midline advancement to cover the exposed left ventricular assist device (Fig. 2). A vacuum-assisted closure device was applied to the lateral defects. These defects were definitively closed with split-thickness skin grafts after substantial contraction had occurred. Six months after left ventricular assist device salvage, the patient successfully underwent orthotopic cardiac transplantation. Intraoperative cultures at the time of this procedure were negative for persistent infection.Fig. 2.: (Above) Lateral relaxing incisions were made to enable adequate release of the rectus muscles for sufficient midline advancement while maintaining a bipedicled blood supply. (Below) The rectus myocutaneous flaps were advanced medially and the anterior rectus fascia was secured as a single layer with 0 polydioxanone suture. As a separate layer of closure, the skin was approximated using 4-0 nylon mattress sutures interposed with staples.The components separation technique should be considered a viable option for treatment of left ventricular assist device infection. Prior reports detail the use of omental and unilateral rectus myocutaneous flaps for left ventricular assist device salvage.4,5 In contrast to these flaps, the components separation technique provides a bipedicled flap to ensure the presence of rich vascular tissue within the pocket, further enhancing antibiotic access. In addition, this technique provides adequate and symmetrical tissue bulk to obliterate dead space and obviate the need for abdominal exploration and omental harvest. Donald W. Buck, II, M.D. Division of Plastic and Reconstructive Surgery Edwin McGee, Jr., M.D. Patrick M. McCarthy, M.D. Division of Cardiothoracic Surgery John Y. S. Kim, M.D. Division of Plastic and Reconstructive Surgery Northwestern University Feinberg School of Medicine Chicago, Ill. DISCLOSURE The authors have no conflict of interest regarding this research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call