Abstract

A two-colored digraph D is primitive if there exist nonnegative integers h and k with h+k>0 such that for each pair (i, j) of vertices there exists an (h, k)-walk in D from i to j. The exponent of the primitive two-colored digraph D is the minimum value of h+k taken over all such h and k. In this article, we consider special primitive two-colored digraphs whose uncolored digraph has n+s vertices and consist of one n-cycle and one (n − 2)-cycle. We give the bounds on the exponents, and the characterizations of the extremal two-colored digraphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.