Abstract

We study the splitting of invariant manifolds of whiskered tori with two frequencies in nearly-integrable Hamiltonian systems, such that the hyperbolic part is given by a pendulum. We consider a two-dimensional torus with a fast frequency vector [Formula: see text], with ω = (1, Ω) where Ω is an irrational number of constant type, i.e. a number whose continued fraction has bounded entries. Applying the Poincaré–Melnikov method, we find exponentially small lower bounds for the maximal splitting distance between the stable and unstable invariant manifolds associated to the invariant torus, and we show that these bounds depend strongly on the arithmetic properties of the frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.