Abstract

Background:The outbreak of COVID-19 is rapidly spreading around the world and became a pandemic disease. For help to better planning of interventions, this study was conducted to forecast the number of daily new infected cases with COVID-19 for next thirty days in Iran.Methods:The information of observed Iranian new cases from 19th Feb to 30th Mar 2020 was used to predict the number of patients until 29th Apr. Artificial Neural Networks (ANN) and Auto-Regressive Integrated Moving Average (ARIMA) models were applied for prediction. The data was prepared from daily reports of Iran Ministry of Health and open datasets provided by the JOHN Hopkins. To compare models, dataset was separated into train and test sets. Mean Squared Error (MSE) and Mean Absolute Error (MAE) was the comparison criteria.Results:Both algorithms forecasted an exponential increase in number of newly infected patients. If the spreading pattern continues the same as before, the number of daily new cases would be 7872 and 9558 by 29th Apr, respectively by ANN and ARIMA. While Model comparison confirmed that ARIMA prediction was more accurate than ANN.Conclusion:COVID-19 is contagious disease, and has infected many people in Iran. Our results are an alarm for health policy planners and decision-makers, to make timely decisions, control the disease and provide the equipment needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.