Abstract

Handsome proof nets were introduced by Retor\'e as a syntax for multiplicative linear logic. These proof nets are defined by means of cographs (graphs representing formulas) equipped with a vertices partition satisfying simple topological conditions. In this paper we extend this syntax to multiplicative linear logic with units and exponentials. For this purpose we develop a new sound and complete sequent system for the logic, enforcing a stronger notion of proof equivalence with respect to the one usually considered in the literature. We then define combinatorial proofs, a graphical proof system able to capture syntactically the proof equivalence, for the cut-free fragment of the calculus. We conclude the paper by defining the exponentially handsome proof nets as combinatorial proofs with cuts and defining an internal normalization procedure for this syntax.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.