Abstract

We propose a rapid, high-fidelity, and noise-resistant scheme to generate many-body entanglement between multiple qubits stabilized by dissipation into a 1D bath. Using a carefully designed time-dependent drive, our scheme achieves a provably exponential speedup over state-of-the-art dissipative stabilization schemes in 1D baths, which require a timescale that diverges as the target fidelity approaches unity and scales exponentially with the number of qubits. To prepare quantum dimer pairs, our scheme only requires local 2-qubit control Hamiltonians, with a protocol time that is independent of system size. This provides a scalable and robust protocol for generating a large number of entangled dimer pairs on-demand, serving as a fundamental resource for many quantum metrology and quantum information processing tasks. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.