Abstract

The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n 1+Ω (1) per machine. In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [ 15 ]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O (log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O (log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.